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Proximal operators and proximal 
gradient methods

                                Pierre Ablin



2

The Training Problem
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Convergence GD I

Theorem

Let f be convex and L-smooth. 

Where

Not true for many 
problems 

Is f always 
differentiable?



6Change notation: Keep loss and 
regularizer separate

Data fit function

The Training problem

If F or R is not 
differentiable

F+R is not 
differentiable

If F or R is not 
smooth

F+R is not 
smooth

(In most cases)
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Non-smooth Example
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Non-smooth Example

Does not fit. 
Not smooth

Need more 
tools

The problem
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Assumptions for this class

The Training problem

What does 
this mean?
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Examples

SVM with soft margin

Lasso

Low Rank Matrix Recovery Not smooth

Not smooth



14Convexity without smoothness: 
Subgradient

Q: what is a 
condition for  w 
to minimize f?
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g =0



16Convexity without smoothness: 
Subgradient

g =0

If   is differentiable 
at   , then
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Optimality conditions

The Training problemThe Training problem
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Working example: Lasso

Lasso

Q: Show that 0 is solution if and only 
if 
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Working example: Lasso

Difficult 
inclusion

Solve 
iteratively

Lasso
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Solving the problem by iterative 
minimization



31Proximal method I: iteratively 
minimizes an upper bound

The w that minimizes the upper bound gives ... 
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35Proximal method I: iteratively 
minimizes an upper bound

Can we minimize the 
right-hand side?

But what about R(w)? Adding on +         to upper bound:

The w that minimizes the upper bound gives gradient descent
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39Proximal method I: iteratively 
minimizes an upper bound
Minimizing the right-hand side of

Factorization ! Let  

Optimality:
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Proximal operator
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EXE: Is this Proximal operator well defined? Is it even a function?
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Proximal Operator: Inclusion definition

Rearranging

EXE: Is this Proximal operator well defined? Is it even a function?
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Proximal Operator: fixed point

EXE: Show that                                 if and only if 
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EXE : Let 

Show that

Gradient Descent using proximal map

A gradient 
step is also a 
proximal step
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Proximal Operator: Properties 

Exe:
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Proximal Operator: Properties 

Exe:
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Proximal Operator: Soft thresholding 

Exe:
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Proximal Operator: Soft thresholding 

Exe:

Induces sparsity
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51Proximal Operator: 
Singular value thresholding

Similarly, the prox operator of the nuclear norm for matrices:

EXE: This is a HARD exercise ! Use lemma: 
For            orthogonal,           diagonal with >0 entries, 
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Proximal Operator: Non-expansiveness 

Proximal Operators are nonexpansive
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Proximal Operator: Non-expansiveness 

Proximal Operators are nonexpansive

This will be used 
to show that 
proximal steps 
do not hurt the 
convergence of 
gradient descent
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Using subgradient characterization
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Proximal Operator: Non-expansiveness 

Proof: Let
Using subgradient characterization

Using convexity and subgradient

Proximal Operators are nonexpansive



63Proximal method : iteratively minimizes 
an upper bound
Set y = wt and minimize the right-hand side in w 

This suggests an 
iterative method



64Proximal method: A fixed point 
viewpoint

The Training problem
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68Proximal method: A fixed point 
viewpoint

The Training problem

Optimal is a fixed point 

Upper bound viewpoint
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The Proximal Gradient Method



70Example of prox gradient: Iterative Soft 
Thresholding Algorithm (ISTA)

Lasso

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.

ISTA:



71Example of prox gradient: Iterative Soft 
Thresholding Algorithm (ISTA)

Lasso

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.

ISTA:

Soft-thresholding: induces Sparsity
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Convergence of Prox-GD for convex 
Theorem 

Then

where

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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Proof sketch
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Proof sketch Fixed point viewpoint
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Proof sketch Fixed point viewpoint

Non-expansive
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Proof sketch Fixed point viewpoint

Non-expansiveThe rest similar to 
standard proof of conv. 
Of standard GD 
without prox term 
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Convergence of Prox-GD
Theorem (Beck Teboulle 2009)

Then

where

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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The FISTA Method

Weird, but it works
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Convergence of FISTA
Theorem (Beck Teboulle 2009)

Then

Where wt are given by the FISTA algorithm

Amir Beck and Marc Teboulle (2009), SIAM J. IMAGING SCIENCES,  
A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems.
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More on the Lasso
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L1 versus L2 regularization

Ridge regression

Lasso
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L1 versus L2 regularization

Diabetes dataset
10 features (age, sex, bmi, cholesterol, ...), 442 
samples. Predict disease progression.
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L1 versus L2 regularization

Diabetes dataset
10 features (age, sex, bmi, cholesterol, ...), 442 
samples. Predict disease progression.

Path : 
For both methods, plot the predicted coefficients 
as regularization changes



84

L1 versus L2 regularization
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L1 versus L2 regularization
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L1 versus L2 regularization

B.M.I
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L1 versus L2 regularization
Triglicerides
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L1 versus L2 regularization
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Optimization of the Lasso Not strongly convex when 
n < p ! 
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Optimization of the Lasso Not strongly convex when 
n < p ! 

Slow in the beginning….

But then, linear convergence! 
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Sparsity accelerates convergence! 
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Sparsity accelerates convergence! 

Now, strongly convex ! Fast 
convergence when support is identified
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