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General machine learning framework

Dataset: T1,...,T, € R

Parameters: w € R”
Risk functions: ¢; (’lU, 37@) =8 (’w) c R
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General machine learning framework
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Dataset: T1,...,T, € RY

Parameters: w € RP
Risk functions: ¢; (w, LUZ) = fz (w) c R

Empirical risk minimization (ERM):

Find w by minimizing F'(w Z fi(w

99 % of machine learning optimization
problems are of this form



Optimization of a sum of terms

Empirical risk minimization (ERM)

Find w by minimizing F'(w Z fi(w

Can we use this sum structure?



The Training Problem

Solving the training problem: min - Z fi(w)

Reference method: Gradient descent

\% (% Zfi(w)) = %vaz'(w)

Gradient Descent Algorithm

Set w® = 0, choose a > 0.
fort=0,1,2,..., T —1

wt—H_w __Zz 1vfz( )
Output w’




Solving the training problem: min = Z fi(w)

Problem with Gradient Descent:
Each iteration requires computing a gradient V f;(w) for
each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm

Set w = 0, choose a > 0.
tort=20,1,2,...,T

wH_l_w __Zz 1vfz( )
Output w’




Gradient descent

One iteration costs O(’I’L):
cannot scale to a large scale setting.
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Problem with Gradient Descent:
Each iteration requires computing a gradient V f;(w) for
each data point.

One iteration costs O(’I’L)

cannot scale to a large scale setting.

We need a method with better scaling !
Can we progress on the training problem by looking

at just a few samples at a time?



Stochastic Gradient Descent

Is it possible to design a method that
uses only the gradient of a single data
function f;(w) at each iteration?
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Stochastic Gradient Descent

Is it possible to design a method that
uses only the gradient of a single data
function f;(w) at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, .., n} selected

uniformly at random. Then

E; [V f;(w ZW; = V/f(w)
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Stochastic Gradient Descent

Is it possible to design a method that
uses only the gradient of a single data
function f;(w) at each iteration?

Unbiased Estimate
Let j be a random index sampled from {1, .., n} selected

uniformly at random. Then

E; [V f;(w ZW; = V/f(w)



Stochastic Gradient Descent

SGD, Constant stepsize
Set w” = 0, choose a > 0

for t =0,1,2,.... T —1
sample 7 € {1,...,n}
wtl = wt — aV f;(w?)

Output w!

15



Intuition about SGD
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SGD: intuition
Vi) == 3 fi(w)
1=1

- When far from the optimum (\/ f (w) large), it is likely that sz (”U))
is a descent direction.
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SGD: intuition
Vi) = - filw)

- When far from the optimum (\/ f (w) large), it is likely that sz (w)
is a descent direction.

Question: What is a quantity that measures

whether V f;(w)is a descent direction 7 What is its
average value 7
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Vi) =3 filw)

- When far from the optimum (\/ f (w) large), it is likely that sz (”IU)

is a descent direction.

Question: What is a quantity that measures
whether V f;(w)is a descent direction 7 What is its

average value 7

Answer

Scalar product: (Vf(w), Vfi (’LU))

On average: B [(V£(w), Vi(w)] = = S (VF(w), Vfi(w)) = V()]

1=1



SGD: intuition
Vi) = - filw)

- When far from the optimum large), it is likely that \V i (w
w ()
is a descent direction.

- At the optimum, we do not have sz (’w*) — O, hence it is a bad

estimate of the gradient : it is zero on average, but it has some variance
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Vi) ==Y filw)

- When far from the optimum (\/ f (w) large), it is likely that sz (”IU)

is a descent direction.

- At the optimum, we do not have sz (’w*) — O, hence it is a bad

estimate of the gradient : it is zero on average, but it has some variance

Question: Consider the least squares problem

fi(w) = %((azi,w — ;)% where HxZHZ — 1

Let 75 = (i, w) — Y; the residuals. What is the
variance of V [i(W) at the optimum? Can it be 07



Stochastic Gradient Descent
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Convergence Strongly Convex =

and Bounded Gradient

TheoremIf f is p — strongly convex and E[||V f;(w)|]?] < B?

f0<a< i then the iterates of the SGD method satisty

(87
E [|lw’ —w*[lz] <1 - ap)'|lw’ — w3+ EBQ

Shows that a ~ Shows that oo ~ 0

1
Y



Proof: le — ’wt — OfoJ (wt), ] ~ [1, “ .. ,’I’L]
1) Show that

wat+1—w*|‘% _ Hwt—’w*H%—2a<vfj(wt)th_w*>+O‘2vaj(wt)H%'

2) Show that

E; [[[w™ —w[l3] < [l —w*[)3 = 2a(V f(w'),w" — w") + o* B
3) Using strong convexity, demonstrate that
Ej [[lw™ —w|3] < (1~ ap)l|w’ - w5+ a”B?
4) Show that
E[[lw™ —w[|3] < (1 - ap)E [|lw" —w"[[3] +a’B

Where the expectation is taken w.r.t. the whole past. Conclude.
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Stochastic Gradient Descent
a =0.01
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Stochastic Gradient Descent

a=0.1
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Stochastic Gradient Descent 27

a =0.2

1
a=0.2




Stochastic Gradient Descent
a =0.5
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Stochastic Gradient
a =0.5
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Stochastic Gradient Descent

30
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Stochastic Gradient Descent
a =0.5
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Stochastic Gradient Descent

a =0.5
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1) Start with
big steps and
end with

smaller steps



Stochastic Gradient Descent
a =0.5




SGD with decreasing stepsize

SGD with decreasing stepsize
Set w’ =0
Choose a; > 0,
fort=0,1,2,..., 7T —1
sample 7 € {1,...,n}
wt = wt — a, V f;(w?)
Output w’

Shrinking
Stepsize
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SGD with decreasing stepsize

SGD with decreasing stepsize
Set w' =0
Choose a; > 0,
fort=20,1,2,...,T —1
sample 7 € {1,...,n}
wt = wt — a, V f;(w?)
Output w’

Shrinking
Stepsize

What should the step-size be?
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Step sizes should be small enough *°

TheoremIf f is ;1 — strongly convex and E[||V f;(w)||?] < B?

f0<a< % then the iterates of the SGD method satisty

(87
E [|lw’ —w*[lz] <1 - ap)'|lw’ — w3 + EBQ



Step sizes should be large enough  *

Intuition: If step sizes are too small, the algorithm

will stop moving before convergence.

Question:

1
Consider gradient descent on w — 5 HwHQ with step sizes (/¢ .

What is a condition for convergence to the correct limit?
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Intuition: If step sizes are too small, the algorithm

will stop moving before convergence.

Question: 1
Consider gradient descent on w — 5 HwH2 with step sizes Ot .

What is a condition for convergence to the correct limit?

t
Answer: Wi41 = Wy — OWygy SO Wy = H(l — Oéi)wo
1=1
t

Condition : e
lim (1 —a;) =0, ie. Zat = +00
1 t=0

t——+00 -
1=
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TheoremTf f is u — strongly convex and E[||V f;(w)|]?] < B?

If oy is such that Zozt = 400, Zozf = K < +o00, then
t=0 =

—1
. 0 |2 2
-] < (13 o) -l 8

Question: Demonstrate the theorem.

1
(1+1¢t)P

If we take oy = what is the best value for 6 ?



SGD with shrinking stepsize

Distance to the minimum

1ﬂ“j

101 1

Convergence plot
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SGD with shrinking stepsize

Convergence plot

e

107

| Gradient Descent

Loss function
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SGD with (late start) averaging

SGDA 1.1
Set w' =0
Choose ay > 0, ay — 0, >~ g = 0
Choose averaging start sp € N
fort =0,1,2,.... T —1
sample 7 € {1,...,n}
wit = w! —  V f;(w?)

if t > sg
— 1 t t
W = t—SO Z’i:SO w
else: W = w
Output w

and Optimization (1992)

i B. T. Polyak and A. B. Juditsky, SIAM Journal on Control
Adeb Acceleration of stochastic approximation by averaging
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SGD with (late start) averaging

SGDA 1.1
Set w' =0
Choose ay > 0, ay — 0, >~ g = 0
Choose averaging start sp € N
fort=20,1,2,...,T —1
sample 7 € {1,...,n}

t+1 .t . ¢ This is not
w =W - atvf] (w ) efficient. How to
lf t > S0 make this efficient?
— 1 t "
W= t—So Z’I;:S() w
else: w = w
Output w

B. T. Polyak and A. B. Juditsky, SIAM Journal on Control
.3?@ and Optimization (1992)
Adebe Acceleration of stochastic approximation by averaging




Stochastic Gradient Descent i

With and without averaging

Convergence plot

— 5GD shrink
— SGD average

1071 4

Starts slow, but
can reach higher
accuracy

Loss function

0 2000 4000 6000 BOOO 10000 12000 14000
#iterations



Stochastic Gradient Descent 0

With and without averaging

Convergence plot

—— 5GD shrink
— SGD average

1071 4

Loss function

0 2000 4000 G000  B0OO0 10000 12000 14000
#iterations
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Stochastic Gradient Descent
Averaging the last few iterates

Convergence plot

— SGD shrink
— 5GD0 average end

LF

0 2000 4000 6000  BOOO 10000 12000 14000
#iterations
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Comparison GD and SGD for strongly
convex SGD GD

Iteration 1 1
v o) o=(0)
complexity € €
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Comparison GD and SGD for strongly
convex SGD GD

Iteration 1 1
v o) o=(d)
complexity € €

Cost of an

O (1) O (n)

iteration
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Comparison GD and SGD for strongly
convex SGD GD

Iteration 1 1
v o) o=(d)
complexity € €

Cost of an

iteration

Total 1 1
complexity” & (E) O | nlog -
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Comparison GD and SGD for strongly
convex SGD GD

Iteration 1 1
v o) o=(d)
complexity € €

Cost of an

iteration
Total 1 | 1
complexity” O - O | nlog -

*Total complexity = (Iteration complexity) x (Cost of an iteration)
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Comparison GD and SGD for strongly
convex SGD GD

Iteration 1 1
v o) o=(d)
complexity € €

Cost of an

iteration 0 (1) O (n)
Total 1 O | 1
complexity” 0 E nlog -
What happens if € is small? What happens if n is big?

*Total complexity = (Iteration complexity) x (Cost of an iteration)



Mini-batching

02



Mini-batching

23



Mini-batching

TR
_

o4



Mini-batching

CPU / GPU parallelization : it is faster to compute ten gradients
once than one gradient ten times

SGD:
Wi41 — W — Q’Vz'f(’wt)

Mini-batch SGD:
Wty1 = Wy — O szjf ’wt)

j 1

Compute gradient over a mini batch

55
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Mini-batching
Avantages:

- Uses parallelization

Time for a pass on the dataset

15 -

10 A

Time (ms)

10° 101 102 103
Batch size



Mini-batching

o7



Why Machine Learners Like SGD




Why Machine Learners like SGD

Though we solve:

min = Z€ (hw(z"),y") + AR(w)

weRd " 4

We want to solve:

The statistical learning problem:

Minimize the expected loss over an unknown expectation

wrrel;lfrild E(x’y),\,p [f (hw (:IJ), y)]

SGD can solve the
statistical learning problem!

59



Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an unknown expectation

mlfild ]E(x y)~D [E (hw (JJ), y)]

SGD o0.0 for learning
Set w =0, a >0
fort=0,1,2,.... T —1
sample (x,y) ~ D
calculate v, = V €(hyt(x),y)
il — wt _ owt
Output w' = 7 Zt L w

60
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Train error

104_
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Error
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Number of pass on the dataset



Train error and test error
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