Note
Click here to download the full example code
Structure of the minima of KSD descentΒΆ
# Author: Pierre Ablin <pierre.ablin@ens.fr>
#
# License: MIT
import torch
from ksddescent import ksdd_lbfgs
import matplotlib.pyplot as plt
import numpy as np
def make_mog(centers, vars, weights):
weights = torch.tensor(weights)
weights /= weights.sum()
def score(x):
den = 0
top = 0
for center, var, weight in zip(centers, vars, weights):
exp = torch.exp(-.5 * ((x - center) ** 2).sum(axis=1) / var)
den += weight * exp
top += weight * exp[:, None] * (x - center) / var
return - top / den[:, None]
def potential(x):
op = 0.
for center, var, weight in zip(centers, vars, weights):
exp = torch.exp(-.5 * ((x - center) ** 2).sum(axis=1) / var)
op += weight * exp
return torch.log(op)
def sampler(n_samples):
x = []
for c, v, w in zip(centers, vars, weights):
z = torch.randn(int(n_samples * w), 2)
z *= np.sqrt(v)
z += c
x.append(z.clone())
return torch.cat(x)
return score, potential, sampler
vars = [.1, .3, 2]
for var in vars:
fac = 1
centers = [torch.tensor([-1, 0]), torch.tensor([1, 0.])]
# centers = [torch.tensor([0., 1.]), torch.tensor([0., -1])]
variances = [var, var]
weights = [.5, .5]
score, potential, sampler = make_mog(centers, variances, weights)
n_samples = 50
p = 2
x = .5 * torch.randn(n_samples, p)
x[:, 0] = 0.0 * torch.randn(n_samples)
x0 = x
bw = .1
x_ksd0, ksd_traj0, _ = ksdd_lbfgs(x.clone(), score, bw=bw, store=True)
x1 = .5 * torch.randn(n_samples, p)
x_ksd, ksd_traj, _ = ksdd_lbfgs(x1.clone(), score, bw=bw, store=True)
x2 = .5 * torch.randn(n_samples, p)
x2[:, 0] = 0.05 * torch.randn(n_samples)
x_ksd1, ksd_traj1, _ = ksdd_lbfgs(x2.clone(), score, bw=bw, store=True)
labels = ['KSD', 'KSD', 'KSD']
methods = ['init1', 'init2', 'init3']
colors = ['blue', 'blue', 'blue']
for x_final, x_init, label, color, method in zip([x_ksd, x_ksd0, x_ksd1],
[x1, x0, x2],
labels, colors, methods):
plt.figure(figsize=(3, 2))
# plt.plot(traj[:, :, 0], traj[:, :, 1], c='k', alpha=.2, linewidth=.5)
s = 2
plt.scatter(x_init[:, 0], x_init[:, 1], s=.3, color='green',
marker='x')
x_final = x_final.detach()
plt.scatter(x_final[:, 0], x_final[:, 1], label=label, s=s, c=color)
# plt.legend()
x_ = np.linspace(-2, 2)
y_ = np.linspace(-1.5, 1.5)
X, Y = np.meshgrid(x_, y_)
XX = torch.tensor(np.array([X.ravel(), Y.ravel()]).T)
Z = potential(XX).reshape(X.shape).detach().numpy()
plt.contour(X, Y, Z, levels=5, colors='k', alpha=.6)
x_ = np.linspace(min(x_), max(x_), 20)
y_ = np.linspace(min(y_), max(y_), 20)
X, Y = np.meshgrid(x_, y_)
XX = torch.tensor(np.array([X.ravel(), Y.ravel()]).T)
score_z = score(XX)
u = score_z[:, 0].reshape(X.shape).detach().numpy()
v = score_z[:, 1].reshape(X.shape).detach().numpy()
plt.quiver(X, Y, u, v, color='red', alpha=.2)
plt.tick_params(axis='both', which='both', bottom=False, top=False,
labelbottom=False, left=False, right=False,
labelleft=False)
plt.xlim(min(x_), max(x_))
plt.ylim(min(y_), max(y_))
plt.show()
Total running time of the script: ( 0 minutes 1.841 seconds)