Structure of the minima of KSD descentΒΆ

  • plot minima
  • plot minima
  • plot minima
  • plot minima
  • plot minima
  • plot minima
  • plot minima
  • plot minima
  • plot minima
# Author: Pierre Ablin <pierre.ablin@ens.fr>
#
# License: MIT

import torch
from ksddescent import ksdd_lbfgs
import matplotlib.pyplot as plt
import numpy as np


def make_mog(centers, vars, weights):
    weights = torch.tensor(weights)
    weights /= weights.sum()

    def score(x):
        den = 0
        top = 0
        for center, var, weight in zip(centers, vars, weights):
            exp = torch.exp(-.5 * ((x - center) ** 2).sum(axis=1) / var)
            den += weight * exp
            top += weight * exp[:, None] * (x - center) / var
        return - top / den[:, None]

    def potential(x):
        op = 0.
        for center, var, weight in zip(centers, vars, weights):
            exp = torch.exp(-.5 * ((x - center) ** 2).sum(axis=1) / var)
            op += weight * exp
        return torch.log(op)

    def sampler(n_samples):
        x = []
        for c, v, w in zip(centers, vars, weights):
            z = torch.randn(int(n_samples * w), 2)
            z *= np.sqrt(v)
            z += c
            x.append(z.clone())
        return torch.cat(x)
    return score, potential, sampler


vars = [.1, .3,  2]
for var in vars:
    fac = 1
    centers = [torch.tensor([-1, 0]), torch.tensor([1, 0.])]
    # centers = [torch.tensor([0., 1.]), torch.tensor([0., -1])]
    variances = [var, var]
    weights = [.5, .5]
    score, potential, sampler = make_mog(centers, variances, weights)

    n_samples = 50
    p = 2

    x = .5 * torch.randn(n_samples, p)
    x[:, 0] = 0.0 * torch.randn(n_samples)

    x0 = x
    bw = .1
    x_ksd0, ksd_traj0, _ = ksdd_lbfgs(x.clone(), score, bw=bw, store=True)
    x1 = .5 * torch.randn(n_samples, p)

    x_ksd, ksd_traj, _ = ksdd_lbfgs(x1.clone(), score, bw=bw, store=True)
    x2 = .5 * torch.randn(n_samples, p)
    x2[:, 0] = 0.05 * torch.randn(n_samples)
    x_ksd1, ksd_traj1, _ = ksdd_lbfgs(x2.clone(), score, bw=bw, store=True)
    labels = ['KSD', 'KSD', 'KSD']
    methods = ['init1', 'init2', 'init3']
    colors = ['blue', 'blue', 'blue']
    for x_final, x_init, label, color, method in zip([x_ksd, x_ksd0, x_ksd1],
                                                     [x1, x0, x2],
                                                     labels, colors, methods):
        plt.figure(figsize=(3, 2))
        # plt.plot(traj[:, :, 0], traj[:, :, 1], c='k', alpha=.2, linewidth=.5)
        s = 2
        plt.scatter(x_init[:, 0], x_init[:, 1], s=.3, color='green',
                    marker='x')

        x_final = x_final.detach()
        plt.scatter(x_final[:, 0], x_final[:, 1], label=label, s=s, c=color)
        # plt.legend()

        x_ = np.linspace(-2, 2)
        y_ = np.linspace(-1.5, 1.5)
        X, Y = np.meshgrid(x_, y_)
        XX = torch.tensor(np.array([X.ravel(), Y.ravel()]).T)
        Z = potential(XX).reshape(X.shape).detach().numpy()
        plt.contour(X, Y, Z, levels=5, colors='k', alpha=.6)

        x_ = np.linspace(min(x_), max(x_), 20)
        y_ = np.linspace(min(y_), max(y_), 20)
        X, Y = np.meshgrid(x_, y_)
        XX = torch.tensor(np.array([X.ravel(), Y.ravel()]).T)
        score_z = score(XX)
        u = score_z[:, 0].reshape(X.shape).detach().numpy()
        v = score_z[:, 1].reshape(X.shape).detach().numpy()
        plt.quiver(X, Y, u, v, color='red', alpha=.2)

        plt.tick_params(axis='both', which='both', bottom=False, top=False,
                        labelbottom=False, left=False, right=False,
                        labelleft=False)
        plt.xlim(min(x_), max(x_))
        plt.ylim(min(y_), max(y_))
        plt.show()

Total running time of the script: ( 0 minutes 1.841 seconds)

Gallery generated by Sphinx-Gallery