ksddescent.mmd_lbfgs¶
- ksddescent.mmd_lbfgs(x0, target_samples, bw=1, max_iter=10000, tol=1e-05, store=False)¶
Sampling by optimization of the MMD
This uses target samples from a base distribution and returns new samples by minimizing the maximum mean discrepancy.
- Parameters
- x0torch.tensor, size n_samples x n_features
initial positions
- target_samplestorch.tensor, size n_samples x n_features
Samples from the target distribution
- bwfloat
bandwidth of the stein kernel
- max_iterint
max numer of iters
- tolfloat
tolerance for L-BFGS
- Returns
- x: torch.tensor
The final positions
References
M.Arbel, A.Korba, A.Salim, A.Gretton. Maximum mean discrepancy gradient flow, Neurips, 2020.