
Exercises: gradient descent

Pierre Ablin

1 Gradient flows

We let f : Rp → R a differentiable function. Starting from x0 ∈ Rp, gradient descent with
step-size η > 0 iterates

xn+1 = xn − η∇f(xn). (1)

The behavior of such algorithm is more easily understood by looking at the gradient flow,
which is the Ordinary Differential Equation (ODE), starting from x(0) = x0:

ẋ(t) = −∇f(x(t)). (2)

Indeed, Eq (1) is an Euler discretization of the gradient flow equation with step η, and as
such we have xn ' x(ηn).

1.1

We define φ(t) = f(x(t)). Show that we have

φ′(t) = −‖∇f(x(t))‖2

1.2

We assume that f is bounded from below by f∗. Demonstrate that the function t →
‖∇f(x(t))‖2 is integrable, and that

inf
t≤T
‖∇f(x(t))‖2 ≤ f(x0)− f∗

T
.

1.3

Assume that f satisfies the Polyak-Lojasciewicz inequality for some µ > 0:

∀w, f(x)− f∗ ≤ 1

2µ
‖∇f(x)‖2.

Demonstrate that f(x(t)) converges to f∗, and give the convergence rate.
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2 Gradient descent in a simple case

We let p ≥ 0, and consider a vector b ∈ Rp and a matrix A ∈ Rp×p. We assume that A is a
symmetric matrix with positive eigenvalues λmax = λ1 ≥ · · · ≥ λp = λmin > 0. We define the
following quadratic objective function:

f(x) =
1

2
x>Ax− b>x

Exercise 1: Show that this function is convex, and that its gradient is given by ∇f(x) =
Ax− b. Find the analytical expression of its minimizer x∗, and of f(x∗).

We now consider the sequence of iterates of gradient descent with a step size ρ > 0, starting
from x0 = 0:

For n ≥ 0 : xn+1 = xn − ρ∇f(xn)

Exercise 2: Obtain a closed form expression for xn and give a condition on ρ for this
sequence to converge to 0.

In the following, we assume that ρ = 1
λmax

.

Exercise 3: Demonstrate that ‖xn − x∗‖ ≤ (1− λmin
λmax

)n‖x∗‖.

This is what we call linear convergence, and 1− λmin
λmax

is the rate of convergence.

The quantity κ = λmin
λmax

is called the conditioning of the matrix A, and, by extension, of the
function f . This number is always between 0 and 1. The closer it is to one, the faster gradient
descent converges.

Here, if for instance κ = 1
2 , then the convergence is very fast: ‖xn − x∗‖ ≤ 1

2n ‖x
∗‖, every

iteration halves the error. However, in some cases we can have some very poorly conditioned
problems.

Exercise 4: Assume that κ = 1
1000 , and that ‖x∗‖ = 1. How many iterations of gradient

descent are needed to reach an error ‖xn − x∗‖ ≤ 1
10? and to get ‖xn − x∗‖ ≤ 1

100?

In these badly conditioned case, it would be useful to obtain a bound on the error that does
not depend on the conditioning of the problem. To get such a bound, we look at another
measure of the error, f(xn)− f(x∗).

Exercise 5: Show that for all µ ∈ [0, 1] and all n we have (1 − µ)2nµ ≤ 1
2n+1 . Deduce

that

f(xn)− f(x∗) ≤ 1

(2n+ 1)ρ
‖x∗‖2

This is what we call sub-linear convergence. Note that this rate of convergence does not get
worse when λmin goes to 0: it does not depend on the conditioning of the problem.
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