
Exercises: differential calculus

Pierre Ablin

1 Convexity: general results

1.1

Show that a sum of smooth functions is smooth. What is the corresponding smoothness
constant?

Show that the sum of strongly convex functions is strongly convex. What is the corresponding
strong convexity constant ?

1.2

Show that x→ ‖x‖ is convex, where ‖ · ‖ is any norm on Rd.

1.3

Let f : Rd → R convex. Show that g(x) = f(Ax+ b) is convex, where A ∈ Rd×d and b ∈ Rd.
If f is µ-strongly convex, is g strongly convex? If so, what is a strong convexity constant of
g? If f is L-smooth, is g smooth? If so, what is a smoothness constant of g?

Hint: You can demonstrate, and then use the fact that σmin(AB) ≥ σmin(A)σmin(B) and
σmax(AB) ≤ σmax(A)σmax(B) for two square matrices A, B.

1.4

Let h1, . . . , hn : R→ R some convex function, X ∈ Rn×p and define

f(w) =
1

n

n∑
i=1

hi(〈xi, w〉),

where xi ∈ Rp is the n-th row of X. Assume that the hi are such that supt∈R h
′′
i (t) = M < +∞.

Show that f is smooth, and determine a smoothness constant.
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2 Polyak-Lojasciewicz inequality

Let f : R→ R be a µ-strongly convex function. Let x∗ its arg-minimum. Show that f verifies
the Polyak-Lojasciewicz inequality:

∀x ∈ Rd, f(x)− f(x∗) ≤ 1

2µ
‖∇f(x)‖2

3 Convexity / non-convexity of matrix functions

3.1

Let m ∈ R and define f(x) = 1
2(x − m)2, g(a, b) = 1

2(ab − m)2. What are the gradient/
Hessian of these functions? Are these functions convex ?

3.2

Determine the set of points a, b such that ∇2g(a, b) is positive. What do you observe at the
minimum? Could we have predicted this?

3.3

Let M ∈ Rp×p and define f(X) = 1
2‖X −M‖

2, g(A,B) = 1
2‖AB −M‖

2 where A,B ∈ Rp×p.
What are the gradient/ Hessian of these functions? Are these functions convex ?

Hint: here, it is convenient to write the Hessians as linear operators. For instance for f , we
can write ∇2f(X)(U) = . . . where . . . is a linear function of U ∈ Rp×p.
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4 Gradient descent in a simple case

We let p ≥ 0, and consider a vector b ∈ Rp and a matrix A ∈ Rp×p. We assume that A is
a symmetric matrix with positive eigenvalues λmax = λ1 ≥ · · · ≥ λp = λmin. We define the
following quadratic objective function:

f(x) =
1

2
x>Ax− b>x

Exercise 1: Show that this function is convex, and that its gradient is given by ∇f(x) =
Ax− b. Find the analytical expression of its minimizer x∗, and of f(x∗).

We now consider the sequence of iterates of gradient descent with a step size ρ > 0, starting
from x0 = 0:

For n ≥ 0 : xn+1 = xn − ρ∇f(xn)

Exercise 2: Obtain a closed form expression for xn. Hint : what recursion does the sequence
yn = xn − x∗ satisfy?

We now use the spectral decomposition of A, and write

A = U>DU

where D = diag(λ1, . . . , λp) contains the eigenvalues of A and U ∈ Rp×p contains the
eigenvectors of A. We recall that UU> = U>U = Ip.

Exercise 3: Define zn = U(xn − x∗). Show that zn is given by

zn = (Ip − ρD)nz0

Give a condition on ρ for this sequence to converge to 0.

In the following, we assume that ρ = 1
λmax

.

Exercise 4: Demonstrate that ‖xn − x∗‖ ≤ (1− λmin
λmax

)n‖x∗‖.

This is what we call linear convergence, and 1− λmin
λmax

is the rate of convergence.

The quantity κ = λmin
λmax

is called the conditioning of the matrix A, and, by extension, of the
function f . This number is always between 0 and 1. The closer it is to one, the faster gradient
descent converges.

Here, if for instance κ = 1
2 , then the convergence is very fast: ‖xn − x∗‖ ≤ 1

2n ‖x
∗‖, every

iteration halves the error. However, in some cases we can have some very poorly conditioned
problems.

Exercise 5: Assume that κ = 1
1000 , and that ‖x∗‖ = 1. How many iterations of gradient

descent are needed to reach an error ‖xn − x∗‖ ≤ 1
10? and to get ‖xn − x∗‖ ≤ 1

100?

In these badly conditioned case, it would be useful to obtain a bound on the error that does
not depend on the conditioning of the problem. To get such a bound, we look at another
measure of the error, f(xn)− f(x∗).

Exercise 6: Show that for all x, f(x)− f(x∗) = 1
2(x− x∗)>A(x− x∗). Deduce a closed form

formula for f(xn)− f(x∗).
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We are now ready to give a bound that does not depend on the conditioning of the prob-
lem:

Exercise 7: Show that for all µ ∈ [0, 1] and all n we have (1 − µ)2nµ ≤ 1
2n+1 . Deduce

that

f(xn)− f(x∗) ≤ 1

ρ(2n+ 1)
‖x∗‖2

This is what we call sub-linear convergence. Note that this rate of convergence does not get
worse when λmin goes to 0: it does not depend on the conditioning of the problem.
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