Gradient descent : theory and practice

Pierre Ablin

Machine learning task

Finite Sum Training Problem
$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

Today: assume that f is differentiable and L-smooth

Iterative minimization

Finite Sum Training Problem
$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w) =: f(w)$$

Usually cannot solve this in closed form : $w^* = \dots$

Idea: start from initial guess w^0 and try to find a new, better point. Iterative process $w^0 \to w^1 \to \dots$

Gradient descent : basic idea

Given w^0 , look for w^1 as $w^1 = w^0 + d$ where d is a small displacement.

Ideally:
$$d \in \arg\min_{d \in \mathbb{R}^p} f(w^0 + d)$$
 Ju

Just as hard as the original problem :(

Solution:
$$d \in \arg \min_{\|d\| \le \varepsilon} f(w^0 + d)$$

Q: as ε goes to 0, what is the limit of d?

Gradient descent algorithm

Init : Select initial guess w^0 , $\rho > 0$ For t = 0, 1, ..., T: - Update $w^{t+1} = w^t - \rho \nabla f(w^t)$ Return : w^{T+1}

Questions :

- Does it converge? In which sense?
- At which speed?
- Choice of ρ ?

Optimization is hard (in general)

Gradient Descent Example

A Logistic Regression problem using the fourclass labelled data from LIBSVM (n, d) = (862, 2)

 $\begin{array}{l} \textbf{Logistic} \ \textbf{Regression} \\ \min_{w \in \mathbf{R}^{d}} \frac{1}{n} \sum_{i=1}^{n} \ln(1 + e^{-y^{i} \langle w, x^{i} \rangle}) + \lambda ||w||_{2}^{2} \end{array}$

Can we prove that this always works?

Gradient Descent Example 0 \circ $\alpha = 0.7$ **Optimal** point 2 A Logistic Regression problem using the fourclass labelled data 1.5 from LIBSVM (n, d) = (862, 2)1 $\operatorname{Logistic}_{n} \operatorname{Regression}$ $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$ 0.5 \cap \cap 0 L -3 -2.5 -1.5 -0.5 0.5 -2 -1 0

Can we prove that this always works?

Gradient Descent Example 0 \circ $\alpha = 0.7$ **Optimal** point 2 A Logistic Regression problem using the fourclass labelled data 1.5 from LIBSVM (n, d) = (862, 2)1 Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$ 0.5 \cap 0 L -3

-2.5

Can we prove that this always works?

No! There is no universal optimization method. The "no free lunch" of Optimization

-2

-1.5

-1

-0.5

0.5

0

Gradient Descent Example 0 $\alpha = 0.7$ 0 **Optimal** point 2 A Logistic Regression problem using the fourclass labelled data 1.5 from LIBSVM (n, d) = (862,2)Logistic Regression $\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1} \ln(1 + e^{-y^i \langle w, x^i \rangle}) + \lambda ||w||_2^2$ 0.5 0 L -3 -2.5 -2 0.5 -1.5 -1 -0.5 0 Can we prove Specialize **No!** There is no that this always universal optimization method. The "no free works? lunch" of Optimization

Convex and smooth training problems

Convexity

We say $f : \operatorname{dom}(f) \subset \mathbb{R}^p \to \mathbb{R}$ is convex if $\operatorname{dom}(f)$ is convex and $f(\lambda w + (1 - \lambda)y) \le \lambda f(w) + (1 - \lambda)f(y), \quad \forall w, y \in C, \lambda \in [0, 1]$ $f(\lambda w + (1 - \lambda)y)$ f(w)Global minimizer =Stationary point = \boldsymbol{y} Local minimizer W

Convexity

A differentiable function $f : \operatorname{dom}(f) \subset \mathbb{R}^p \to \mathbb{R}$ is convex iff

 $f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$

Convexity

A twice differentiable function $f : \operatorname{dom}(f) \subset \mathbb{R}^p \to \mathbb{R}$ is convex iff

Main Advantage of Convexity

Nice Property

If $\nabla f(w^*) = 0$ then $f(w^*) \le f(w), \quad \forall w \in \mathbb{R}^d$

Main Advantage of Convexity

Nice Property

If $\nabla f(w^*) = 0$ then $f(w^*) \le f(w), \quad \forall w \in \mathbb{R}^d$

All stationary points are global minima

Lemma: Convexity => Nice property

If
$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle$$
, $\forall w, y \in \mathbb{R}^d$

then Nice Property holds

PROOF: Choose $y = w^*$

Data science methods most used (Kaggle 2017 survey)

Convexity: Examples

Extended-value extension:

Norms and squared norms:

Negative log and logistic:

 $f: \mathbb{R}^p \to \mathbb{R} \cup \{\infty\}$ $f(x) = \infty, \quad \forall x \notin \operatorname{dom}(f)$ $x \mapsto ||x||$ $x \mapsto ||x||^2$ $x \mapsto -\log(x)$ $x \mapsto \log\left(1 + e^{-y\langle a, x \rangle}\right)$ $x \mapsto \max\{0, 1 - yx\}$

Hinge loss

Negatives log determinant, exponentiation ... etc

Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth if

 $||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^p$

Smoothness

We say $f : \mathbb{R}^p \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^p$$

If a twice differentiable $f : \mathbb{R}^p \to \mathbb{R} \cup \{\infty\}$ is *L*-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^p$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^p$$

Smoothness

We say $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is smooth if

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n$$

If a twice differentiable $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is L-smooth then

1)
$$d^{\top} \nabla^2 f(x) d \leq L \cdot ||d||_2^2, \quad \forall x, d \in \mathbb{R}^n$$

2)
$$f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||^2, \quad \forall x, y \in \mathbb{R}^n$$

EXE: determine the smoothness constants of

 $f(w) := \frac{1}{2} ||Xw - b||_2^2 \text{ for } X \in \mathbb{R}^{n \times p}, \ b \in \mathbb{R}^n$

Important consequences of Smoothness

If $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ is *L*-smooth then

Smoothness: Examples

Convex quadratics:

Logistic:

Trigonometric:

$$x \mapsto x^\top A x + b^\top x + c$$

$$x \mapsto \log\left(1 + e^{-y\langle a, x \rangle}\right)$$

$$x \mapsto \cos(x), \sin(x)$$

Smoothness: Convex counter-example

We'll see how to handle this problem next class

Smoothness: Convex counter-example

Insight into Gradient Descent using Smoothness

$$f(w) \le f(w^0) + \langle \nabla f(w^0), w - w^0 \rangle + \frac{L}{2} ||w - w^0||^2$$

Q: what is the minimizer of the upper bound in w?

Insight into Gradient Descent using Smoothness

$$f(w) \le f(w^0) + \langle \nabla f(w^0), w - w^0 \rangle + \frac{L}{2} ||w - w^0||^2$$

Minimizing the upper bound in w we get:

$$\nabla_{w} \left(f(w^{0}) + \langle \nabla f(w^{0}), w - w^{0} \rangle + \frac{L}{2} ||w - w^{0}||^{2} \right) = \nabla f(w^{0}) + L(w - w^{0})$$

$$A \text{ gradient}$$

$$descent \text{ step !}$$

$$w = w^{0} - \frac{1}{L} \nabla f(w^{0})$$

Insight into Gradient Descent using Smoothness

$$f(w) \le f(w^0) + \langle \nabla f(w^0), w - w^0 \rangle + \frac{L}{2} ||w - w^0||^2$$

Minimizing the upper bound in w we get:

$$\nabla_w \left(f(w^0) + \langle \nabla f(w^0), w - w^0 \rangle + \frac{L}{2} ||w - w^0||^2 \right) = \nabla f(w^0) + L(w - w^0)$$

Smoothness Lemma (EXE):

If f is L-smooth, show that $f(y - \frac{1}{L}\nabla f(y)) - f(y) \leq -\frac{1}{2L} ||\nabla f(y)||_2^2, \forall y$ $f(w^*) - f(w) \leq -\frac{1}{2L} ||\nabla f(w)||_2^2, \quad \forall w \in \mathbb{R}^n$ where $f(w^*) \leq f(w), \quad \forall w \in \mathbb{R}^n$

A gradient descent step !
$$w = w^{0} - \frac{1}{L} \nabla f(w^{0})$$

Gradient descent as a majorizationminimization procedure

Gradient descent as a majorizationminimization procedure

Gradient descent as a majorizationminimization procedure

Convergence analysis

A note on convergence

Theorem: Let f convex and L-smooth. Then, the iterates w^t of gradient descent with step $\rho \in [0, 2/L[$ verify

 $\lim_{t \to +\infty} w^t = w^* \text{ with } w^* \in \arg\min f$

A note on convergence

Theorem: Let f convex and L-smooth. Then, the iterates w^t of gradient descent with step $\rho \in [0, 2/L[$ verify

 $\lim_{t \to +\infty} w^t = w^* \text{ with } w^* \in \arg\min f$

No convergence rate, i.e. a bound on $||w^t - w^*||$

A note on convergence

Theorem: Let f convex and L-smooth. Then, the iterates w^t of gradient descent with step $\rho \in [0, 2/L[$ verify

 $\lim_{t \to +\infty} w^t = w^* \text{ with } w^* \in \arg\min f$

No convergence rate, i.e. a bound on $||w^t - w^*||$

Proof: Uses difficult Cauchy sequences arguments (show that any subsequence of w^t go to w^*)

Convergence rates: smooth case

We have
$$f(w - \frac{1}{L}\nabla f(w)) - f(w) \le -\frac{1}{2L} \|\nabla f(w)\|^2$$

Gradient descent with step
$$ho = rac{1}{L}$$
 :

$$f(w^{t+1}) - f(w^t) \le -\frac{1}{2L} \|\nabla f(w^t)\|^2$$

 $\sum_{t=0}^{T} \|\nabla f(w^t)\|^2 \le 2L(f(w^0) - f(w^*)), \quad \forall T > 0$ Q: what does it mean?

Convergence rates: smooth case

 $\nabla f(...t)$

Theorem : if f is L-smooth, the iterates of gradient descent verify

$$\inf_{t \le T} \|\nabla f(w^t)\|^2 \le \frac{2L}{T} (f(w^0) - f(w^*))$$

 ~ 0

Convergence speed

Slow convergence Say $2L(f(w^0) - f(w^*)) = 1$ In order to have $\inf_{t \leq T} \|\nabla f(w^t)\|^2 \leq 10^{-4}$ Need 10⁴ iterations...

Fundamental lemma:

$$\begin{split} \|w^{t+1} - w^*\|^2 &= \|w^t - w^*\|^2 + \frac{1}{L^2} \|\nabla f(w^t)\|^2 - \frac{2}{L} \langle \nabla f(w^t), w^t - w^* \rangle \\ \text{If f convex:} \\ f(w^t) - f^* &\leq \langle \nabla f(w^t), w^t - w^* \rangle \end{split}$$

Together:

$$f(w^{t}) - f^{*} \leq \frac{L}{2} (\|w^{t} - w^{*}\|^{2} - \|w^{t+1} - w^{*}\|^{2}) + \frac{1}{2L} \|\nabla f(w^{t})\|^{2}$$

If f is convex and L-smooth :

$$f(w^t) - f^* \le \frac{L}{2T} \|w^0 - w^*\|^2$$

If f is convex and L-smooth :

$$f(w^t) - f^* \le \frac{L}{2T} \|w^0 - w^*\|^2$$

Proof: L-smoothness gives $f(w^{t+1}) - f(w^t) \le -\frac{1}{2L} \|\nabla f(w^t)\|^2$

Convexity gives $f(w^t) - f^* \le \frac{L}{2} (\|w^t - w^*\|^2 - \|w^{t+1} - w^*\|^2) + \frac{1}{2L} \|\nabla f(w^t)\|^2$

If f is convex and L-smooth :

$$f(w^t) - f^* \le \frac{L}{2T} \|w^0 - w^*\|^2$$

Proof: L-smoothness gives $f(w^{t+1}) - f(w^t) \le -\frac{1}{2L} \|\nabla f(w^t)\|^2$

Convexity gives $f(w^t) - f^* \le \frac{L}{2} (\|w^t - w^*\|^2 - \|w^{t+1} - w^*\|^2) + \frac{1}{2L} \|\nabla f(w^t)\|^2$

Rest on the board

Faster convergence rates: strongly convex functions

Strong convexity

We say $f : \mathbb{R}^p \to \mathbb{R} \cup \{\infty\}$ is μ -strongly convex if

Strong convexity: equivalent definitions

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\mu}{2} ||w - y||^2, \quad \forall w, y \in \mathbb{R}^p$$

If f is twice differentiable :

$$\nabla^2 f(x) \succeq \mu Id$$

Equivalently: "The eigenvalues of $\nabla^2 f(x)$ are all bounded below by μ "

EXE: determine the strong convexity constant of

 $f(w) := \frac{1}{2} ||Xw - b||_2^2 \text{ for } X \in \mathbb{R}^{n \times p}, \ b \in \mathbb{R}^n$

Convergence GD strongly convex

Theorem

Let f be μ -strongly convex and L-smooth.

$$||w^{t} - w^{*}||_{2}^{2} \le \left(1 - \frac{\mu}{L}\right)^{t} ||w^{0} - w^{*}||_{2}^{2}$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

$$\Rightarrow \text{ for } \frac{||w^T - w^*||_2^2}{||w^0 - w^*||_2^2} \le \epsilon \text{ we need } T \ge \frac{L}{\mu} \log\left(\frac{1}{\epsilon}\right) = O\left(\log\left(\frac{1}{\epsilon}\right)\right)$$

Convergence GD strongly convex

Theorem

Let f be μ -strongly convex and L-smooth.

$$f(w^{t}) - f(w^{*}) \le (1 - \frac{\mu}{L})^{t} (f(w^{0}) - f(w^{*}))$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

Convergence GD strongly convex

Theorem

Let f be μ -strongly convex and L-smooth. Conditioning $\kappa = \frac{\mu}{L}$

$$f(w^t) - f(w^*) \le (1 - \frac{\mu}{L})^t (f(w^0) - f(w^*))$$

Where

$$w^{t+1} = w^t - \frac{1}{L} \nabla f(w^t), \text{ for } t = 1, \dots, T$$

Gradient Descent Example: logistic regression

$$y-\text{axis} = \frac{||w^t - w^*||_2^2}{||w^1 - w^*||_2^2} \qquad \qquad \log\left(\frac{||w^t - w^*||_2^2}{||w^1 - w^*||_2^2}\right) \le t\log\left(1 - \frac{\mu}{L}\right)$$

Proof Convergence GD strongly convex + smooth

Smoothness

Proof: $f(w^{t+1}) \le f(w^t) + \langle \nabla f(w^t), w^{t+1} - w^t \rangle + \frac{L}{2} \|w^{t+1} - w^t\|^2$ $= f(w^{t}) - \frac{1}{2L} \|\nabla f(w^{t})\|^{2}$

Proof Convergence GD strongly convex + smooth

Smoothness

Proof:

$$f(w^{t+1}) \leq f(w^t) + \langle \nabla f(w^t), w^{t+1} - w^t \rangle + \frac{L}{2} \|w^{t+1} - w^t\|^2$$

$$= f(w^t) - \frac{1}{2L} \|\nabla f(w^t)\|^2$$

Polyak-Lojasiewicz (PL) inequality :

Q: show that strong convexity => PL

$$\|\nabla f(w)\|^2 \ge 2\mu(f(w) - f(w^*)), \ \forall w$$

Proof Convergence GD strongly convex + smooth

Proof: $f(w^{t+1}) \le f(w^t) + \langle \nabla f(w^t), w^{t+1} - w^t \rangle + \frac{L}{2} \|w^{t+1} - w^t\|^2$ $= f(w^t) - \frac{1}{2L} \|\nabla f(w^t)\|^2$

Polyak-Lojasiewicz (PL) inequality :

$$\begin{aligned} \|\nabla f(w)\|^2 &\geq 2\mu (f(w) - f(w^*)), \ \forall w \\ f(w^{t+1}) &\leq f(w^t) - \frac{\mu}{L} (f(w^t) - f(w^*)) \\ f(w^t) - f(w^*) &\leq (1 - \frac{\mu}{L})^t (f(w^0) - f(w^*)) \end{aligned}$$

Nesterov acceleration

Smooth + convex case: can we do better ?

If f is convex and L-smooth :

$$f(w^t) - f^* \le \frac{L}{2T} \|w^0 - w^*\|^2$$

Convergence in 1/T

Smooth + convex case: can we do better ?

If f is convex and L-smooth :

$$f(w^t) - f^* \le \frac{L}{2T} \|w^0 - w^*\|^2$$

Convergence in 1/T

Nesterov acceleration : another first order algorithm with faster convergence: convergence in $1\ /\ T^2$

Smooth + convex case: can we do better ?

If f is convex and L-smooth :

$$f(w^t) - f^* \le \frac{L}{2T} \|w^0 - w^*\|^2$$

Convergence in 1/T

Nesterov acceleration : another first order algorithm with faster convergence: convergence in $1\ /\ T^2$

Optimal complexity! No first order algorithm can have a convergence faster than $1 / T^2$

Nesterov acceleration: principle

Idea: extrapolation

Init : Select initial guess
$$w^0, y^0$$
 and $\alpha^0 = 1$
For $t = 0, 1, ..., T$:
- Update $y^{t+1} = w^t - \frac{1}{L}\nabla f(w^t)$
 $\alpha^{t+1} = \frac{1 + \sqrt{1 + 4\alpha^t}}{2}$
- Extrapolate
 $w^{t+1} = y^{t+1} + \frac{\alpha^t - 1}{\alpha^{t+1}}(y^{t+1} - y^t)$

L

 w^{T+1} **Return** :

Nesterov acceleration: principle

Idea: extrapolation

$$\begin{aligned} \text{Init}: \text{Select initial guess} \quad w^0, y^0 \text{ and } \alpha^0 &= 1 \\ \text{For } t = 0, 1, \dots, T: \\ \text{- Update } y^{t+1} &= w^t - \frac{1}{L} \nabla f(w^t) \\ \alpha^{t+1} &= \frac{1 + \sqrt{1 + 4\alpha^t}}{2} \end{aligned} \qquad \text{Go a bit "further"} \\ \text{- Extrapolate} \\ w^{t+1} &= y^{t+1} + \frac{\alpha^t - 1}{\alpha^{t+1}} (y^{t+1} - y^t) \end{aligned}$$

$$\begin{aligned} \text{Return:} \quad w^{T+1} \end{aligned}$$

Nesterov acceleration: convergence result

Theorem : if f is convex and L-smooth, the iterates of Nesterov acceleration verify

$$f(w^t) - f^* \le \frac{2\|y^0 - x^*\|^2}{t(t+1)} = O(\frac{1}{t^2})$$

Examples of smooth machine learning problems

Least squares

Data: $x_1, \ldots, x_n \in \mathbb{R}^p$, and $y_1, \ldots, y_n \in \mathbb{R}$

Assumption: There exists w^* such that

Optimization problem:

$$y_i \simeq \langle x_i, w^* \rangle$$
$$\min_{w} f(w) = \frac{1}{n} \sum_{i=1}^n (\langle x_i, w \rangle - y_i)^2$$

* \

Q: show that we can rewrite $f(w) = \frac{1}{n} \|Xw - y\|^2$

Is the problem convex, smooth? Compute the associated constants

Ridge regression

Problem :
$$\min_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} (\langle x_i, w \rangle - y_i)^2$$

Has infinitely many solutions when n < p. Bad conditioning, and very sensitive to X.

Solution : regularize !

$$\min_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} (\langle x_i, w \rangle - y_i)^2 + \frac{\lambda}{2} ||w||^2$$

Q: Is the problem convex, smooth? Compute the associated constants

Logistic regression

Data: $x_1, \ldots x_n \in \mathbb{R}^p$, and $y_1, \ldots, y_n \in \{-1, +1\}$

Assumption: There exists w^* such that

$$y_i \simeq \operatorname{sign}(\langle x_i, w^* \rangle)$$

Optimization problem: $\min_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, w \rangle))$

Q: Is the problem convex, smooth? Compute the associated constants

Regularized logistic regression

Data: $x_1, \ldots x_n \in \mathbb{R}^p$, and $y_1, \ldots, y_n \in \{-1, +1\}$

Assumption: There exists w^* such that

$$y_i \simeq \operatorname{sign}(\langle x_i, w^* \rangle)$$

Optimization problem: _n

$$\min_{w} f(w) = \frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle x_i, w \rangle)) + \frac{\lambda}{2} ||w||^2$$

Q: Is the problem convex, smooth? Compute the associated constants