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Finite Sum Training Problem 

Machine learning task

!       exists

Today: assume that f is differentiable and L-smooth



Finite Sum Training Problem 

Iterative minimization

Usually cannot solve this in closed form : 

Idea: start from initial guess      and try to find a new, 
better point. Iterative process   



Gradient descent : basic idea

Given     , look for      as                      where d is a 
small displacement.     

Ideally: Just as hard as the 
original problem :(

Solution: 

Q: as   goes to 0, what is the limit of d ? 



Gradient descent algorithm

Init : Select initial guess
For t = 0, 1, …, T:
     - Update
Return :   

Questions : 
 - Does it converge? In which sense?

- At which speed?
- Choice of    ? 



Optimization is hard (in general)

Need 
assumptions!
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Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Logistic Regression
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Gradient Descent Example

A Logistic Regression 
problem using the 
fourclass labelled data 
from LIBSVM 

(n, d)= (862,2) 

Can we prove 
that this always 
works?

Convex and 
smooth training 
problems

No! There is no 
universal optimization 
method. The “no free 
lunch” of Optimization 

Specialize

Logistic Regression



Convexity

Global minimizer = 
Stationary point = 
Local minimizerw



Convexity



Convexity



Main Advantage of Convexity
Nice Property



Main Advantage of Convexity
Nice Property

All stationary points are 
global minima

Lemma: Convexity => Nice property 

PROOF: 



Data science methods most used 
(Kaggle 2017 survey)

Convex 
Optimization 

problems



Convexity: Examples

Norms and squared norms:

Negative log and logistic:

Hinge loss

Negatives log determinant, exponentiation … etc



Smoothness



Smoothness



Smoothness

EXE: determine the smoothness constants of 



Important consequences of Smoothness

y



Smoothness: Examples

Convex quadratics:

Logistic:

Trigonometric:



Smoothness: Convex counter-example

We’ll see how to handle 
this problem next class



Smoothness: Convex counter-example

Does not fit 
Not smooth

We’ll see how to handle 
this problem next class



Insight into Gradient Descent using 
Smoothness

Q: what is the minimizer of the upper bound in w?



Insight into Gradient Descent using 
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A gradient 
descent step !



Insight into Gradient Descent using 
Smoothness

Minimizing the upper bound in w we get:

A gradient 
descent step !

Smoothness Lemma (EXE): 
If f is L-smooth, show that 



Gradient descent as a majorization-
minimization procedure

Majorize



Gradient descent as a majorization-
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Gradient descent as a majorization-
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Gradient descent as a majorization-
minimization procedure

Minimize



Gradient descent as a majorization-
minimization procedure

Etc...     ...



Convergence analysis



A note on convergence

Theorem: Let    convex and L-smooth. Then, the iterates      of 
gradient descent with step                    verify   
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A note on convergence

Theorem: Let    convex and L-smooth. Then, the iterates      of 
gradient descent with step                    verify   

No convergence rate, i.e. 
a bound on    

Proof: Uses difficult Cauchy sequences 
arguments (show that any subsequence of      go 
to     )



Convergence rates: smooth case

We have 

Gradient descent with step                   : 

Q: what does it mean?



Convergence rates: smooth case

Theorem : if f is L-smooth, the iterates of gradient descent verify      

Convergence speed
Slow convergence 
Say
In order to have
Need 10  iterations…  ⁴ iterations…  



Convergence rates: smooth + convex 
case

 
If f convex:

Together: 

Fundamental lemma:



Convergence rates: smooth + convex 
case

 If f is convex and L-smooth :

Proof: 



Convergence rates: smooth + convex 
case

 If f is convex and L-smooth :

Proof: L-smoothness gives  

Convexity gives



Convergence rates: smooth + convex 
case

 If f is convex and L-smooth :

Proof: L-smoothness gives  

Convexity gives

Rest on the board



Faster convergence rates: strongly 
convex functions



Strong convexity

Hinge loss + L2

Quadratic lower bound



Strong convexity: equivalent definitions 

 If f is twice differentiable :

Equivalently: “The eigenvalues of             are all bounded 
below by   ”  

EXE: determine the strong convexity constant of 



Convergence GD strongly convex 

Theorem

Let f be m-strongly convex and L-smooth. 

Where
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Convergence GD strongly convex 

Theorem

Let f be m-strongly convex and L-smooth. 

Where

Conditioning



Gradient Descent Example: logistic 
regression 



Proof:

Proof Convergence GD strongly 
convex + smooth Smoothness



Proof:

Proof Convergence GD strongly 
convex + smooth Smoothness

Polyak-Lojasiewicz (PL) inequality : Q: show that strong 
convexity => PL 



Proof:

Proof Convergence GD strongly 
convex + smooth Smoothness

Polyak-Lojasiewicz (PL) inequality : 



Nesterov acceleration



Smooth + convex case: can we do 
better ? 

 If f is convex and L-smooth :

Convergence in 1/T
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Smooth + convex case: can we do 
better ? 

 If f is convex and L-smooth :

Convergence in 1/T

Nesterov acceleration : another first order algorithm with 
faster convergence: convergence in 1 / T² 

Convergence in 1/T

Optimal complexity! No first order algorithm can 
have a convergence faster than 1 / T²



Nesterov acceleration: principle

Idea: extrapolation

Init : Select initial guess
For t = 0, 1, …, T:
     - Update

 - Extrapolate

Return :   



Nesterov acceleration: principle

Idea: extrapolation

Init : Select initial guess
For t = 0, 1, …, T:
     - Update

 - Extrapolate

Return :   

Go a bit “further” 
than 



Nesterov acceleration: convergence 
result

Theorem : if f is convex and L-smooth, the iterates of Nesterov 
acceleration verify      



Examples of smooth machine 
learning problems



Least squares
Data:

Assumption: There exists       such that

Optimization problem:    

Q: show that we can rewrite

Is the problem convex, smooth? Compute the associated constants  



Ridge regression
Problem :

Has infinitely many solutions when n < p. Bad conditioning, and very 
sensitive to X.
Solution : regularize ! 

Q: Is the problem convex, smooth? Compute the associated constants 
 



Logistic regression
Data:

Assumption: There exists       such that

Optimization problem:    

Q: Is the problem convex, smooth? Compute the associated constants 
 



Regularized logistic regression
Data:

Assumption: There exists       such that

Optimization problem:    

Q: Is the problem convex, smooth? Compute the associated constants 
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