Exercises: Implicit bias of gradient descent

Pierre Ablin

We let $X \in \mathbb{R}^{n \times p}$ and $y \in \mathbb{R}^n$ with n < p. We consider the problem

$$\min_{w} f(w) = \frac{1}{2} \|Xw - y\|^2.$$

We assume that X is of rank n, so that XX^{\top} is invertible.

1 Implicit bias of gradient descent

1.1

We define $w^* = X^{\top} (XX^{\top})^{-1} y$. Show that w^* is a minimizer of f. What is the set of minimizers of f? Demonstrate that w^* is the minimizer of minimum norm.

We expect gradient descent to converge towards a point in that set; but the quesion is which one? We will answer this in the next questions

1.2

Let w_t the iterations of gradient descent with step size $\eta \leq \frac{1}{L}$ starting from $w_0 = 0$ for this problem. What recursion does this sequence verify?

Show that for all t, there exists $u_t \in \mathbb{R}^n$ such that $w_t = X^{\top} u_t$. What is the update equation on u_t ?

1.3

What is the limit of u_t ? Demonstrate that

$$\lim_{t \to +\infty} w_t = w^*$$

Therefore, we have shown that gradient descent on f does not converge to a random minimizer, it actually chooses the minimizer of minimum norm ! This is an *implicit* bias: the norm minimization is never explicitly stated in the optimization problem.

2 Link between early stopping and regularization

We consider $w^*(\lambda)$ the ridge regression solution :

$$w^*(\lambda) = \arg\min\frac{1}{2} \|Xw - y\|^2 + \frac{\lambda}{2} \|w\|^2$$

In the following, we define $K = XX^{\top}$. We recall that K is invertible.

2.1

Show that $w^*(\lambda) = X^{\top} (K + \lambda I_n)^{-1} y.$

2.2

We consider the gradient flow equation for gradient descent on the least squares problem:

$$\dot{w}(t) = -X^{\top}(Xw(t) - y)$$

starting from w(0) = 0. Show that $w(t) = X^{\top} (I - \exp(-Kt)) K^{-1} y$

2.3

What can you say as t = 0, as $t \to +\infty$? Same thing for λ .

2.4

Show that $w^*(\frac{1}{t}) \simeq w(t)$ as t gets close to 0. At which order in t is the previous equality true?

As a consequence, early stopping gradient descent at time t is roughly the same thing as solving the ridge regression problem with $\lambda = \frac{1}{t}$: early stopping introduces a form of regularization, which is great for underdetermined problems.